Socioeconomic Status, Parenting, and Child Development
Causes and Consequences of SES-Related Differences in Parent-to-Child Speech

Erika Hoff
Florida Atlantic University

INTRODUCTION

The goal of this chapter is to understand how SES shapes children’s language learning environments and their language development, in the larger context of how socioeconomic status (SES) shapes children’s lives and developmental trajectories. The literature provides ample evidence that both the environments in which children acquire language and the rate of children’s language development vary as a function of family SES. Environmental differences arise, at least in part, from SES-related differences in the ways in which mothers interact with and talk to their children. Compared to lower-SES mothers, higher-SES mothers talk more to their children and are more responsive to their children’s verbalizations (Hoff, Laursen, & Tardif, 2002). Higher-SES mothers use speech more for the purpose of initiating and sustaining conversation with their children and less for the purpose of directing their children’s behavior; they also use more complex syntax and a more varied vocabulary in talking to their children (Hoff et al., 2002; Huttenlocher, Vasilyeva, Cymerman, & Levine, 2002). SES-related differences in children’s language skills are consistently found from at least the age of 2 years (see Arriaga, Fenson, Cronan, & Pethick, 1998; Hoff, in press). The domains of
children's language that differ as a function of SES include the functions to which language is put (e.g., Tough, 1982), the grammatical complexity of speech (e.g., Arriaga et al., 1998; Huttenlocher et al., 2002), and vocabulary (e.g., Arriaga et al., 1998).

This chapter seeks to explain how SES has these effects on language environments and language development, first, by describing the SES-related differences in language environments and child language observed in one sample of mid- and high-SES families in the midwestern United States, and, second, by investigating hypothesized processes that link SES to language environments and developmental outcomes. The chapter will be organized around the following four questions:

1. "What are the SES-related differences in parent-to-child speech?"
2. "What causes SES-related differences in parent-to-child speech?"
3. "What are the SES-related differences in children's early language development?"
4. "Can the SES-related differences in children's vocabularies be attributed to differences in the speech they hear?"

To foreshadow the conclusions, the findings will demonstrate that parent-to-child speech does differ by socioeconomic stratum, even within a relatively advantaged and culturally homogeneous sample. These differences in parent-to-child speech appear to reflect more general SES-related differences in language use. By the time children are 2 years old, they, too, demonstrate SES-related differences in language. This relation of SES to child language is mediated by the nature of the language environment parents create for their children. Parents from higher socioeconomic strata create different language environments than parents from lower socioeconomic strata as a result of both characteristic differences in their language use and differences in the interactive settings they choose.

METHOD USED TO STUDY SES, PARENT-TO-CHILD SPEECH, AND LANGUAGE DEVELOPMENT

Sample

The data come from a sample of 63 mothers and their children who were between 1½ and 2½ years of age at start of the study. These participants were selected from two different socioeconomic strata, which were defined in terms of parental education and occupation. Thirty of these children came from mid-SES families in which both parents had no education past high school other than technical training and, if employed, they worked in unskilled, semi-skilled, or service positions. Thirty-three of these children came from high-SES families in which both parents...
had at least two years of college (in fact all but one parent were college graduates),
and, if employed, they worked in professional or managerial positions. All the
families were European American, monolingual native speakers of English. They
lived in the small cities, rural, and suburban areas of southeastern Wisconsin. By
design, none of the mothers worked outside the home more than 15 hours per
week. According to national census data for the time this research was conducted,
approximately 50% of mothers would not meet this criterion, although in the area
of the midwestern United States where this study was conducted, this selection
criterion probably excluded fewer than 50%. One of the high-SES mothers was a
single parent; four of the mid-SES mothers were single parents. All of the fathers
who were present in the household were employed, with the exception of one father
in the mid-SES sample who was disabled. Income was not a selection criterion but
did differ between the groups. According to self-report, the median family income
for the mid-SES sample was in the $20,000 to $30,000 category; the median family
income for the high-SES sample was in the $30,000 to $40,000. (These numbers
reflect the fact that these data were collected in the 1980s from single-income
families in Wisconsin. As a benchmark, assistant professors of psychology, at that
time and in that area, were being hired at a salary of $24,000.) The two SES
groups also differed in maternal age. The mean age of the mid-SES mothers was
26.1 years, $SD = 3.6$; the mean age of the high-SES mothers was 33.3 years,
$SD = 4.0$.

This study, then, examines only a portion of the SES continuum—a portion at the
high end. There are advantages and disadvantages to such a sample. An advantage
is that it affords the opportunity to study differences associated with education and
occupation unconfounded by poverty. Although there were income differences
between these two groups, neither was living in poverty. None of the children
in this study would be described as at-risk. A disadvantage of the nature of this
sample, of course, is that the data may not contribute to understanding the factors
that affect those children who truly are at risk by virtue of their families’ SES.

The children from these two socioeconomic strata were not different in their
levels of productive language at the start of the study. They were selected to be at
the point where they were all just beginning to combine words but where no more
than 50% of their utterances were multiword utterances. There were no significant
group differences in either the mean length of the children’s utterances (MLU) or
in the mean number of different words they produced at the start of the study. Each
group contained approximately equal numbers of boys and girls and first born and
later born children.

Procedure

Three separate visits were made to the participants in their homes—when the chil-
dren were an average of 22 months old, 24 months old, and 4½ years old. At
the first two visits, the mother and child were videotaped in dyadic interaction
in four settings: mealtime, dressing, book reading, and toy play. The books and toys were provided by the researchers. The taping sessions were scheduled to coincide with the child’s usual time for eating breakfast or lunch. The durations of the mealtime and dressing interactions were allowed to vary naturally and were taped in their entirety. The reading and toy play interactions were taped for no more than 25 minutes each. The videotapes were transcribed, and those transcripts provide the data base for measures of maternal and child speech at Time 1 and Time 2. Forty-three of these mothers and children were visited again within two weeks of the child’s reaching 4½ years; 23 of these participants were high SES and 20 were mid SES. At that time, mother–child interaction was recorded during mealtime and toy play. In addition, the child’s narrative production was assessed using the frog story procedure (Bamberg, 1987; Berman & Slobin, 1994), and each child was administered two standardized vocabulary tests: the Peabody Picture Vocabulary Test (PPVT; Dunn & Dunn, 1981) and the Expressive One-Word Picture Vocabulary Test (Gardner, 1979). The data at Time 3 consist of the child’s spontaneous speech transcribed from recorded mother–child interaction, the child’s narrative production, and the child’s test scores. These, then, are the sources of data to be drawn on in considering the questions with which we began.

WHAT ARE THE SES-RELATED DIFFERENCES IN PARENT-TO-CHILD SPEECH?

This question was addressed with data from the Time 1 transcripts of the mealtime, dressing, and toy play interactions. The reading session was excluded because it was very overrepresented in the speech samples compared to the proportion of time mothers actually spend reading with their children and because talk during reading has unique characteristics (Hoff-Ginsberg, 1991; Snow, Arlmann-Rupp, Hassing, Jobse, Joosten, & Vorster, 1976). The measures, the mean value for each group, and the results of those comparisons are presented in Table 6.1.

The speech high-SES mothers address to their children differs from the speech mid-SES mothers address to their children in the following ways. High-SES mothers produce more speech per unit of time interacting (when the duration of interaction is allowed to vary naturally, it also becomes evident that high-SES mothers sustain conversation longer than mid-SES mothers, thereby further increasing the amount of speech their children hear, Hoff-Ginsberg, 1994), they use a richer vocabulary, they more frequently produce contingent replies to their child’s utterances, they issue fewer behavior directives, and they ask more conversation-eliciting questions. There is no SES-related difference in maternal MLU.

These findings suggest that high SES children experience a different language-learning environment from mid-SES children on two dimensions. One dimension is
social. High-SES mothers are more encouraging of child talk and more responsive to child talk than are mid-SES mothers. In contrast, the speech that mid-SES mothers address to their children is more frequently for the purpose of directing the child's behavior and less frequently for the purpose of eliciting or continuing child talk. Another dimension is what is referred to elsewhere as the data-providing dimension of conversational experience (Hoff & Naigles, 2002; Hoff-Ginsberg, 1986). The children with high-SES mothers hear more speech, and they hear a more varied vocabulary than do the children with mid-SES mothers.

WHAT CAUSES SES-RELATED DIFFERENCES IN PARENT-TO-CHILD SPEECH?

Three hypotheses have been offered in discussions of why parents from different socioeconomic strata differ in the way they talk to their children: (1) they hold different beliefs about their children's communicative abilities and the appropriateness of talking to children (Heath, 1983); (2) they differ in the time available for leisurely conversation—lower SES parents must spend their time in the goal-directed activities of feeding and dressing and do not have time for toy play and book reading (e.g., Snow, Perlmann, & Nathan, 1987); and (3) they have different
styles of language use which are manifest in all conversations, regardless of addressee (Hoff-Ginsberg, 1991).

The first hypothesis can be rejected as an explanation for the findings from this sample. All the mothers were interviewed regarding their beliefs about their children’s communicative abilities and the age at which they started talking to their children; and there were no SES-related differences on either measure (Hoff-Ginsberg, 1991). The second hypothesis can also be rejected, again for this sample, because it is contradicted by the observed main effects of setting and the setting x SES interactions. The main effects of setting were such that the features that characterized the speech of high-SES mothers more than mid-SES mothers were maximized in book reading, but not at all in toy play. In fact, toy play showed the highest usage of behavior directives of all settings (Hoff-Ginsberg, 1991). (This is not surprising if you think about the nature of the toys designed for 2 year olds. Most involve putting square pegs in square holes, round pegs in round holes, and so on. Mothers guide their children with suggestions. It would be a bizarre mother who tried to have a conversation about something else with a child bent on getting Grover to fit down the chimney.) The Setting x SES interactions were such that the SES-related differences in mothers’ speech were greatest in the routine, ostensibly goal-directed settings of dressing and mealtime, and the SES-related differences were attenuated during toy play and book reading.

That leaves the third hypothesis, for which there is support in the data. When the speech that the mothers produced in the interviews about their beliefs and conversational practices is examined, significant SES-related differences in the speech addressed to the researcher emerge. The high-SES mothers produced more utterances, produced longer utterances, and used a richer vocabulary than the mid-SES mothers. Thus, it appears that the SES-related differences in the way these mothers talked to their children are just one manifestation of general SES-related differences in language use and conversational style.

Having established that there are SES-related differences in children’s language learning experiences because there are SES-related differences in how adults use language, we now turn to the question of whether there are also SES-related differences in children’s language development.

WHAT ARE THE SES-RELATED DIFFERENCES IN CHILDREN’S EARLY LANGUAGE DEVELOPMENT?

The SES-related differences in these children’s language at 2 years can be described on the basis of analyses of their spontaneous speech in mother–child conversation (Hoff-Ginsberg, 1998), and the differences at 4½ years can be described on the basis of spontaneous speech in mother–child conversation, elicited narratives (i.e., frog stories), and standardized vocabulary tests.
6. LANGUAGE ENVIRONMENTS & DEVELOPMENT

The samples of the children's speech collected at 2 years were analyzed for their lexical, grammatical, and discourse properties (Hoff-Ginsberg, 1998). In terms of lexical properties, the children from high-SES families used a larger vocabulary in conversation with their mothers—basing the vocabulary estimates on equivalent-sized speech samples for all children. The difference in the range of vocabulary used was particularly pronounced within the domain of object labels. There were no group differences in the grammatical properties of children's speech, as indexed by MLU. In terms of discourse properties, the high-SES children produced more speech that immediately followed a maternal utterance (i.e., adjacent speech), but because the high-SES mothers spoke more, they provided more opportunity for their children to do that. Thus, it is not clear that this difference reflects any greater skill on the part of the high-SES children. In terms of a clear measure of conversational skill, the frequency of contingent replies (Bloom, Rocissano, & Hood, 1976), the groups did not differ. In sum, in this sample of children at age 2 years, there are SES-related differences in the size of the vocabularies they use. This effect of SES holds across birth order and sex. There were also main effects of birth order (Hoff-Ginsberg, 1998), but there were no significant interactions between SES and either birth order or sex.

The speech samples collected at 4½ years have thus far been investigated only for their lexical properties. In the context of mother–child conversation, the high-SES children used a larger vocabulary than the mid-SES children, but the difference was observable only when the word count was based on the entire conversation. Like their mothers, the high-SES children talked more than their mid-SES counterparts resulting in more words and more different words produced. There was no difference in the number of different words used in equal-size samples of conversational speech. The high-SES children scored significantly higher on the test of productive vocabulary (EOWPVT), but there was no difference on the test of comprehension vocabulary (PPVT). Last, there was no difference in the vocabulary used in narrative production which was elicited by the researcher. The measures of child speech at 2 and 4½ years, the means for each group, and the statistically significant differences are indicated in Table 6.2.

In sum, we can say that of the aspects of language development assessed in this sample (i.e., syntax, vocabulary, and conversational skill), SES-related differences were observed only for vocabulary and only in some contexts. Although this may seem to be a modest effect, several considerations make it worth pursuing. One is the advantaged nature of the lower group in this study. If these differences can be observed between two such similar groups, the differences between high SES-children and truly low-SES children are likely to be much greater. Indeed, several sources of data suggest that they are (e.g., Arriaga et al., 1998; Hart & Risley, 1995). Furthermore, vocabulary is important. Vocabulary is a large component of standard IQ tests, and vocabulary knowledge contributes to success in early reading (Chall, Jacobs, & Baldwin, 1990).
TABLE 6.2
Measures of Child Language Proficiency at Age 2 Years and 4½ Years by SES

<table>
<thead>
<tr>
<th></th>
<th>Mid-SES</th>
<th>High-SES</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 2 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocabulary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of word types</td>
<td>45.53</td>
<td>51.00 *</td>
</tr>
<tr>
<td></td>
<td>(9.46)</td>
<td>(15.19)</td>
</tr>
<tr>
<td>Number of object label types</td>
<td>9.73</td>
<td>12.76 **</td>
</tr>
<tr>
<td></td>
<td>(4.41)</td>
<td>(5.11)</td>
</tr>
<tr>
<td>Grammar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean length of utterance (MLU)</td>
<td>1.62</td>
<td>1.63 ns</td>
</tr>
<tr>
<td></td>
<td>(.21)</td>
<td>(.29)</td>
</tr>
<tr>
<td>Conversational skill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjacent speech¹</td>
<td>60.3</td>
<td>66.8 *</td>
</tr>
<tr>
<td></td>
<td>(12.1)</td>
<td>(10.9)</td>
</tr>
<tr>
<td>Contingent adjacent speech²</td>
<td>51.7</td>
<td>50.5 ns</td>
</tr>
<tr>
<td></td>
<td>(11.9)</td>
<td>(11.5)</td>
</tr>
<tr>
<td>At 4½ years—vocabulary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of word types in mother-child conversation</td>
<td>236.8</td>
<td>271.3 *</td>
</tr>
<tr>
<td></td>
<td>(66.1)</td>
<td>(54.6)</td>
</tr>
<tr>
<td>Number of word types in 100 utterances of conversational speech</td>
<td>116.6</td>
<td>123.0 ns</td>
</tr>
<tr>
<td></td>
<td>(14.1)</td>
<td>(23.2)</td>
</tr>
<tr>
<td>Number of word types in frog stories</td>
<td>96.1</td>
<td>79.8 ns</td>
</tr>
<tr>
<td></td>
<td>(29.6)</td>
<td>(17.8)</td>
</tr>
<tr>
<td>PPVT</td>
<td>56.0</td>
<td>59.8 ns</td>
</tr>
<tr>
<td></td>
<td>(15.1)</td>
<td>(14.3)</td>
</tr>
<tr>
<td>EO WPVT</td>
<td>46.8</td>
<td>58.3 **</td>
</tr>
<tr>
<td></td>
<td>(17.6)</td>
<td>(8.7)</td>
</tr>
</tbody>
</table>

¹ Calculated as a percent of child utterances.
² Calculated as a percent of adjacent utterances.

*p < .05, **p < .01, ***p < .001 for difference between mid-SES and high-SES samples by 1-tailed t-test.

CAN THE SES-RELATED DIFFERENCES IN CHILDREN’S VOCABULARIES BE ATTRIBUTED TO DIFFERENCES IN THE SPEECH CHILDREN HEAR?

There is first a logically prior question to consider, and that is whether the observed vocabulary differences are real. It has been argued at different times and in different quarters that observed SES-related differences in vocabulary, and in language more generally, are only reflections of bias in the techniques or instruments used to assess vocabulary. Specifically, it has been suggested that children from different social strata do not differ in how many words they know—just in which words they know. Furthermore, it has been argued that interviews with unfamiliar adults depress the
language performance of lower-SES children more than they do the performance of higher-SES children (Labov, 1970). There are counter arguments and evidence in the literature (e.g., Arriaga et al., 1998), and the findings of the present study also argue against such views. The differences at age 2 years were observed in spontaneous speech, and thus, those differences could not be a matter of bias in the particular words included on a test. Although at 4½ years no differences were observed in equivalent samples of spontaneous speech or in narrative production, it could be that this reflects the fact that ordinary mealtime and toy play conversation and telling a story about a boy, a dog, and a frog are not sufficiently taxing of an average 4½-year-old’s vocabulary to reveal differences among children. That is, even at age 4½, the vocabulary that discriminates one child from another may be sufficiently rare that these situations do not require it. Furthermore, and contrary to the common view that the most familiar setting elicits the highest performance, we found that the mid-SES children did comparatively better than the high-SES children in the narrative task with the examiner than in conversation with their mothers. The mothers who talk less and use a more restricted vocabulary may not only provide less rich data for vocabulary learning, they may also elicit less advanced vocabulary use concurrently.

With respect to why SES-related differences appear in the standardized test of production vocabulary but not comprehension vocabulary, the data suggest two possibilities. One is that there truly are SES-related differences only in productive vocabularies. The other refers to the fact that the productive vocabulary test is almost exclusively nouns, and this may be where SES-related differences are concentrated. The present data do not provide a way of distinguishing between the two possibilities.

The foregoing arguments suggest that the differences observed in the total vocabulary and object label vocabulary used in spontaneous speech at 2 years and in the vocabulary produced in the EOWPVT at 4½ years are real differences, and we turn our attention now to trying to explain them. Because the nature of the differences and the available data are different in each case, the procedures for seeking explanations differ as well.

The search for an explanation of the SES-related differences in children’s vocabulary at 2 years begins with the results of other analyses that suggest that variation in vocabulary growth from Time 1 to Time 2 is significantly related to the lexical richness of the speech children hear (i.e., the number of different words used) and to the length of maternal utterances (Hoff & Naigles, 2002). (At this age, where vocabulary development is the outcome, the social-pragmatic features of conversation seem not to have an effect on language development. Growth in object label vocabularies shows a similar pattern of relations to input except that it is specifically related to the number of object label types in input as well (Hoff, 2002). The next analyses asked whether these input effects explain the SES-related differences in children’s vocabularies. Separate hierarchical multiple regressions were conducted for both word types and object label types, first entering the properties
of input that were significant predictors of individual differences in these outcome measures and then entering SES to ask if there is any variance attributable to SES remaining after variance attributable to properties of input is accounted for.

For number of word types, SES alone (entered as a dummy variable with two values) accounts for 5% of the variance. SES and the input measures together account for 37% of the variance, but the variance uniquely attributable to SES is 1%, which is not significant. It appears that the SES-related differences in characteristics of mothers' speech to children fully explain the SES-related differences in the vocabularies children used.

For object labels, however, the multiple regression analyses tell a less complete story. SES alone accounts for 9% of the variance in the number of different object labels children use. SES and the input measures together account for 32% of the variance, and the variance uniquely attributable to SES remains a significant 4%. One possible explanation of this remaining variance associated with SES is that there are other properties of maternal speech that are associated with SES and predictive of language development that were not measured in the present study. One candidate property is the explicit teaching of object labels. It has been suggested that high-SES mothers in the United States are more likely to play explicit object-labeling games with their children than lower-SES mothers (Goldfield & Reznick, 1990; Lawrence & Shipley, 1996), and this was not a feature of maternal speech that we coded. To pursue this possibility, we returned to the transcripts of mother–child interaction at Time 1 and counted the frequency of mothers' explicit object naming (e.g., This is a ____; See the ____) in the toy play and book reading sessions. The findings were that there was no difference associated with SES, but there was a significant difference associated with setting. Explicit labeling was more frequent during book reading interaction for both mid-SES and high-SES mothers (Hoff, 2002). Other sources suggest that book reading is a more frequent adult–child activity in higher-SES homes (Heath, 1983, U.S. Department of Education, 1999). Together, our finding that reading elicits more parental object label teaching and the evidence that reading occurs more frequently in higher-SES homes suggest that family SES affects children's language learning environments—not only via general characteristics of parent-to-child speech but also via the influence on parent-to-child speech of the interactive settings in which mothers chose to spend their time. The SES-related differences in children's language learning environments mediate the relation between SES and early vocabulary development. This conclusion dovetails with findings from older children that language experience also accounts for SES-related differences in school-aged children's syntactic knowledge (Huttenlocher et al., 2002). Together these findings argue that language experience plays a powerful role in language development, and, thus, social factors that create differences in children's language experience will also create differences in their language development.
Returning to the present data, we consider the source of the difference in the EOWPVT scores at 4½. Although analyses of children’s language experience and its relation to test performance have not been done for this sample, clues regarding potential sources can be found in analysis of the particular items that differentiated the high-SES children from the mid-SES children. The words that the high-SES children produced correctly at least 10% more frequently than the mid-SES children were the following: tiger, triangle, square, ear, wheel, typewriter, fireplace, dentist, penguin, rocket, suitcases, fruit, stool, peanut, jewelry, bench, ruler, children, wall, instruments, cloud(s), vegetables, furniture, saddle, well, drinks, binoculars, anchor, Statue of Liberty, propeller, wrench, food, cash register, skeleton, pier, and trumpet.

The question, then, is what explains why one group of children knows these words, and another group at the same age does not. For some words, it seems most likely that the children who got them wrong actually knew the words but got the test item wrong for other reasons. In some cases the stimulus was a picture of several items, and the required response was a superordinate term (e.g., furniture, food). In other cases, the picture itself seemed particularly difficult to interpret. For example, the picture of clouds looks nothing like clouds in the sky—although it does look very much like a line drawing of clouds such as one would see in a book. In other cases, the mid-SES children may really not have known the meanings of the words they missed because of SES-related differences in experience (e.g., tiger, fireplace, trumpet). Of course, the experience that allows a child to know what a tiger is does not have to be an African safari or even a trip to the zoo. Here again, the SES-related differences in children’s literacy experiences may result in real differences in vocabulary knowledge at 4½ years, just as differences in language input provided by mothers, including, perhaps, language input occasioned by book reading, results in real vocabulary differences at 2 years.

CONCLUSIONS

To conclude, we begin by repeating the questions we set out to answer: (1) “Are there SES-related differences in parent-to-child speech?”; (2) “What causes them?”; (3) “Are there SES-related differences in children’s language development?”; and (4) “Are they the result of SES-related differences in parent-to-child speech?” On the basis of data from a sample of 33 college-educated mothers and 30 high school educated mothers and their children, we suggest the following answers:

(1) Yes, there are SES-related differences in parent-to-child speech. In talking to their children, higher-SES mothers sustain conversation longer, elicit more conversation from their children, and are more responsive to
their children's conversational contributions. They also illustrate a larger vocabulary in the speech they produce.

(2) The differences in the nature of child-directed speech parallel SES-related differences in adult-directed speech, suggesting that the differences in child-directed speech are one manifestation of general SES-related differences in language use.

(3) There are SES-related differences in children's rates of vocabulary growth at age 2, in the amount and lexical richness of speech produced in conversation at age 4½, and in a standardized measure of productive vocabulary at 4½.

(4) These SES-related differences in children's language development can be attributed to differences in their language experience. The SES-related difference in vocabulary at age 2 can be almost fully accounted for by properties of child-directed speech that differ by SES. Ancillary analyses suggest that SES-related differences in the amount of time spent book reading may further contribute to those differences. At age 4½, the observed differences are, arguably, attributable to differences in the children's talkativeness and language use that parallel differences observed in adults and to differential experience with book reading.

The results of the research reviewed here provide strong evidence that SES shapes children's language learning environments and, thus, influences their development of language. The influence on language learning environments occurs via influences of SES on the speech parents address to children. Two factors mediate this relation between SES and parents' child-directed speech. One is general SES-related differences in how adults use language. Higher-SES parents talk more and use a richer vocabulary. The other is SES-related differences in the settings in which parents choose to interact with their children. Higher-SES parents spend more time reading books with their children and book reading is associated with rich vocabulary use and explicit teaching of object labels. These SES-related differences in the language learning environments that parents provide, in turn, produce SES-related differences in children's language development. Higher-SES children develop language, particularly vocabulary, at a faster rate than lower-SES children because, compared to lower SES children, they experience environments that provide them with more information about the lexicon of their language.

ACKNOWLEDGMENTS

The research reported here was supported by grants to the author from the National Institutes of Health and the Spencer Foundation.
REFERENCES

